FINAL CLASS!

My next job?

Anhouncements

- Review Session Helpful? Solutions out soon.

- Request Topics review.

- A single handwritten sheet of notes allowed for finals.
(Confirmation on this soon.)

- No electronic devices.

Today?

FINISIIEII WITH EXAMS3
&

-
-

\ ,..

LOOK RIGHT HERE

CS 354 ~ What to take
away?

Ganesh Kumar . May 6,2016

General

Everything is represented as a sequence of bits (Os and 1s)!

- Your executable

- Your images

- Your browser application
- Your pdfs

- Everything!
What they actually represent...

- Depends on context
- How we choose to interpret them.

General

More specifically,

- | have a piece of data that is 0100 0001. What is it?

- Whatis
0100101010110110101110101010101010101007

Are we going to split it into 8 bit groups? Or split it into 32
bit groups?

Special Mention: Quantum Computing

Compilation System

printf.o

L

hello.c Pre- hello.i |Compi|er| hello.s |Assemblerl hello.o Linker hello

prc(:;ges§or {cel) (as) (1d)
Source PP Modified Assembly Relocatable Executable

program source rogram objec objec
prog bject bject

(text) program (text) programs program
(text) (binary) (binary)

C - Pointers

Operators
&varX -ADDRESS OF variable varX.

*varY -VALUE AT address varY. (Indirection operator)

How do you define a char pointer?

char ch = ‘y’
char * ptr =

/

This right here is not an indirection operator. It is just pointer
declaration syntax;

&ch;

Data Representation

Endianness

Integer - 0Ox12 34 56 78

Little Endian
Addr Data
0x100 78
0x101 56
0x102 34
0x103 12

- 4 bytes.

Big Endian
Addr Data
0x100 12
0x101 34
0x102 56
0x103 78

Data Representation

4 bit datatype - 0000 to 1111
Unsigned Representation

No specific bits to denote sign. So value goes from DEC O to
15.

Signhed Representation

MSB allocated for sign.

So value ran from
ges o BIN 0111 1000

DEC 7 -8

Assembly

- How to read the x86 Instruction Sheet.
- Registers

- Control Flags and Conditional Jumps.
- cmp and test instructions followed by jumps.
- Function Stack Frames!

- All the space associated with a function goes away after it returns i.

e. Popping it off the stack.

Memory

- Not all storage technology are created equal.

- Some are fast and expensive and some are relatively
slow and inexpensive.

- Use a fast memory to serve as a staging area for data

from a slower one - CACHING!

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Memory Hierarchy

/

L1 cache
(SRAM)

CPU registers hold words
retrieved from cache memory.

L1 cache holds cache lines

L2 cache holds cache lines
retrieved from L3 cache.

} retrieved from L2 cache.
L2: L2 cache

(SRAM)
L3: L3 cache

(SRAM)

Main memory
(DRAM)

\

/

Local secondary storage
(local disks)

\

/

Remote secondary storage
(distributed file systems, Web servers)

\

L3 cache holds cache lines
retrieved from memory.

Main memory holds disk blocks
retrieved from local disks.

Local disks hold files
retrieved from disks on
remote network servers.

Cache

Set 0 n - 16 Bytes
Set 1 n - 16 Bytes

Design a cache for me!

(S, E, B, m)

Locality

Temporal Locality

Accessing the same memory location over and over again-

Good Thing!
Spatial Locality

Accessing the memory in sequence (stride-1 reference

pattern) is a good thing as well.

Tip: Algorithm design does not consider the physical

limitations of memory.

Virtual Memory

Why Virtual Memory?

- Memory Protection
- Easy Memory Management
- Use more space that what is physically available in the

physical DRAM memory.

Virtual Memory

Important Task

Virtual Address ——— Physical Address

How?

- Memory Management Unit (In-charge of doing this!)
- Page Tables (Software entity)

- Translation Lookaside Buffer (Separate cache)

Dynamic Memory Allocation

Huge space of unallocated memory - The Heap!
Why an allocator?

- Like any shared resource, access to this resource has to
be controlled.

- See Tragedy of the Commons. (Shared resource - Road.
Controller - Cops and Traffic Rules).

- So, we need a Dynamic Memory Allocator.
- ... with a lot of rules and control mechanisms - Headers,

Alignment Restrictions, Maintenance.

Exceptions

Abrupt change in a processor’s control flow.

Different Kinds

Interrupts (not under our control ~ Asynchronous)

- Press Ctrl + C!

System Calls (we cause the abrupt change)
- Write to display..

Faults (we cause this)

- Accessing a page that is not in the main memory.

Abort (we cause this)

Context Switching

Switch from executing one process to another... while storing
the status (or context) of the switched out process.

Why?
CPU should not wait for a slow task that a process needs to

be performed. (Relative times - 1 sec for a CPU is 10 months
for a Hard Disk)

Process has two modes - Kernel and User

Needs to be in kernel mode before performing a context
switch. Why?

Linking

Hope this is still fresh in memory!

Goodbye
&
Good Luck!

